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SPHERICAL AND CHROMATIC ABERRATION IN A LENS: 
 According to geometric optics, the image of a point object formed in a lens is a point image. In 

reality, the image of a point object is not a point image, but it is spread in to a region in space both along 

and perpendicular to the axis of the lens. The deviation of an optical image in size, shape and position 

formed by a lens is known as aberration of an optical image.  

The aberration of an image is not due to any defect in the construction of the lens, but it is due to the 

reasons mentioned below: 

(1) The phenomenon of refraction in the lens and  

(2) Variation of refractive index of the material of a lens with the wavelength of light. 

Monochromatic aberration:  
The aberration of optical image even when monochromatic light is used is known as 

monochromatic aberration. 

 There are five different types of monochromatic aberrations. They are, 

(1) Spherical aberration 

(2) Coma 

(3) Astigmatism 

(4) Curvature of the field and 

(5) Distortion 

Chromatic aberration: 

 Aberration of optical images formed in a lens due to the variation of refractive index with the 

wavelength of light is known as chromatic aberration. 

Spherical aberration and its minimization: 

 
 

Figure (1) Spherical aberration in convex lens 

 

  The rays of light from the distant object after passing through the lens at the margin of the lens 

[known as marginal rays] converge at a point Im close to the lens. Similarly, the rays of light passing 

through a region close to the axis [known as paraxial rays] converge at a point Ip, away from the lens. 

This results in an image that spreads into a region from Im to Ip along the axis and from A to B 

perpendicular to the axis. This defect of the image due to the rays passing through different section of 

the lens, even with monochromatic light, is known as spherical aberration of the lens. 

 The spread of the image along the axis, [dx] is known as longitudinal spherical aberration. 

The image formed at AB is a circle with least diameter and at this position the best image is formed. 

This circle is called the circle of least confusion. The radius of the circle of least confusion measures 

lateral spherical aberration. 

 

Note: The spherical aberration in a convex lens is taken to be positive as the marginal image is formed 

near the lens than the paraxial image. In the case of concave lens the spherical aberration is taken to be 

negative as the marginal image is formed to the right side of the paraxial image. 
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Methods of reducing spherical aberration: 
(1) By using stops: In this case, the stops used will either allow the paraxial rays or marginal rays. 

Usually the stop is used to avoid the marginal rays. This brings paraxial and marginal images 

close to one another thereby reducing the spherical aberration. 

(2) By the use of Plano-convex lens:  In a lens, the deviation produced by the lens is minimum, 

when the deviation is shared equally between the two surfaces of the lens. This is achieved in a 

Plano-convex lens by arranging convex side facing the incident or emergent rays whichever are 

more parallel to the axis as shown in the following figure(2) 

  

(3) By the use of crossed lenses: It is theoretically known that the lenses have minimum spherical 

aberration when the parallel rays fall of the lens having their radii of curvature r1 and r2 bearing a 

ratio, which satisfies the following condition. 
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In the above equation,  is the refractive index of the material of the lens. For a lens of  = 1.5, the ratio 
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. A lens having its radii of curvature satisfying this condition is known as a crossed lens.  

 

(4) By using two Plano-convex lenses separated by a suitable distance: When the two 

plano-convex lenses are separated at a suitable distance, the total deviation is divided equally 

between the two lenses and the total deviation is minimum. This reduces the spherical aberration 

to minimum. The necessary condition is derived as follows. 

 

 
 

Since F2 is the virtual object of the real image F1 and using the lens formula for the second lens, 

we can write the equation, 
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Or, 21 ffd   - - - (4) 

Equation (4) gives the condition for minimum spherical aberration. 

(5) By using suitable concave and convex lenses in contact: Since spherical aberration produced by 

convex lens is positive and that produced by a concave lens is negative, a suitable combination of 

convex and concave lens will minimize the spherical aberration. 

With reference to figure (4), we can write,  

 22OBFBAK , Also,  1221 FBFBFF , 

So that F1F2 = F1B =F1O2      Or       O2F1 = ½ O2F2. 
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CHROMATIC ABERRATION IN A LENS 

 

Longitudinal or axial chromatic aberration: 
 When a parallel beam of white light is passed through a lens, blue rays are brought to focus at a 

point near the lens and red rays are brought to focus at a point away from the lens and other 

coloured foci are formed in between them. Thus, the image spread over a distance ‘x’ from blue 

focus to red focus and this distance x = fr – fb, is called the longitudinal or axial chromatic 

aberration. An equation for axial chromatic aberration is derived as follows. 

 
The focal length of a lens is given by, 
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Similarly, the focal length for the blue and red rays is given by, 
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Subtracting equation (4) from equation (3), we get, 
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Taking fr fb = f 2 (where f is the mean focal length), we can write equation (5) as 
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Thus, fr – fb = f - - - - (6) 

In equation (6) ‘’ is the dispersive power of the material of the lens and f is the focal length of 

the mean ray. Therefore, axial chromatic aberration is equal to the product of the dispersive power 

of the material of the lens and the focal length of the lens. As  and f are constant for a lens, a single 

lens cannot be used to minimize axial chromatic aberration. As a concave lens forms virtual focus, 

the focal length of the lens for mean ray is negative and hence a suitable combination of a convex 

and a concave lens can minimize axial chromatic aberration. 
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Circle of least confusion, a measure of lateral chromatic aberration: 

 
  

 Let ‘u’ be the object distance and ‘vr’ and ‘vb’ denote the image distance for red and blue 

images. If fr and fb represent the focal lengths for the red and blue rays of light, then, 
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Subtracting equation (2) from (1), we get, 
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Taking vrvb = v2 and  frfb = f 2, the above equation becomes, 
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From similar triangles LQN and AQB we can write,  
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Also, from similar  triangles LPN and APB we can write, 
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Adding equations (4) and (5), we get, 
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But, PQ = vr – vb ; AB = d, in the diameter of the circle of least confusion and LN = D is the 

diameter of the lens aperture and MQ + MP = vr + vb = 2 v approximately. Substituting these values 

in equation (6), we get,  
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 Using equation (3), we can write, 
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 For a parallel beam of incident light, v = f and hence equation (7) reduces to the form, 
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 Thus, the lateral chromatic aberration depends on the diameter of the lens aperture and the 

dispersive power of the material, but it is independent of the focal length of the lens. 

 

 

Let a point object illuminated by white light 

is situated on the axis at a distance “u” from the lens 

and the blue and red images are formed on the axis at 

positions P and Q such that the coloured images 

spread from P to Q. A screen placed at AB has an 

image with least lateral chromatic aberration. The 

diameter of the circle of least confusion gives a 

measure of lateral chromatic aberration and equation 

for is calculated as follows. 
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Condition for achromatism of two lenses placed in contact: 
 

 
 

 
  

Then using lens maker’s formulae, we can write for the Crown glass lens, 
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In the same way, for the Flint concave lens, we can write, 
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 If Fb and Fr denote the focal lengths of the combination for blue and red rays o flight, then, we 
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 For the combination to be achromatic, the focal lengths Fb and Fr must be equal. Thus,  
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 Since  and’ are positive quantities, f ’ is negative if f is positive. Thus if crown glass is used to 

make convex lens, then flint glass lens must be concave. The ratio of the dispersive powers of the 

material of the lenses must be equal to the ratio of the focal lengths of the two lenses. 

 

  Let a convex lens C made of crown glass and a concave lens F 

made of flint glass in contact act as achromatic combination. Let rb  ,,  

and 
''' ,, rb   represent the refractive indices for blue, yellow and red 

rays of light of the two materials of the lenses. Let rb fff ,,  and 

''' ,, rb fff  are corresponding focal lengths of the two lenses and  and ’ 

are the dispersive powers for crown and flint glass respectively. Let R1 and 

R2 be the radii of curvature of the Crown glass lens and let
'

1R  and 
'

2R  be 

the radii of curvature of the Flint glass lens. 
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CONDITION FOR ACHROMATISM OF TWO THIN LENSES SEPARATED BY FINITE 

DISTANCE: 

 
Figure (2) Achromatism of two thin 

lenses separated by a distance 

     Let f1 and f2 be the two convex lenses separated by a 

distance ‘d’ such that they act as achromatic combination. Let 

the two lenses are made of the same material and let ,b, and 

r denote the refractive indices for the mean ray, blue rays and 

red rays respectively. Let ', rr ff  and ', bb ff  are the focal 

lengths of the two lenses for red and blue rays of light.  

 

      Then, the equivalent focal length of the two lenses for 

mean ray, red ray and blue ray are respectively given by the 

following equations 
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Using equation (4) in equations (2) and (3), we get, 
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 For the combination to be achromatic, Fr = Fb;  Or  
br FF
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Re arranging, the above equation, we get,  
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Thus, we get, 
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Equation (7) gives the condition for the two thin convex lenses separated by a distance for them 

to act as achromatic combination of lenses. 



7 Optical Instruments                                                                MBR, VSC, Bellary| 

  

 

CARDINAL POINTS OF AN OPTICAL SYSTEM 

 Gauss introduced the concept of “cardinal points of an optical system” in 1841. Gauss showed 

that any number of co-axial refracting systems can be treated as one unit and the simple formulae for 

thin lenses can be applied provided the distances are measured from two theoretical parallel planes fixed 

with reference to the refracting system. The points of intersection of these planes with the axis are called 

the principal points or Gauss points. Actually there are six points [three pair] in all, which are important 

in understanding the refraction through a co-axial lens system. Of these, two are principal points; two 

are principal fici or focal points and two are nodal points. These six points are together known as 

“cardinal points of an optical system”. 

 Therefore, cardinal points of an optical system is a group of three pairs [six] points such that 

when different distances are measured from these fixed pair of points, the same formulae for thin lenses 

can be used for any optical system. 

Principal foci (focal points) and focal planes: 

 

  
 A set of rays incident on the system of lenses parallel to the axis after passing through the lens 

system converges at a point [converging system] or appear to diverge from a fixed point F2 on the axis. 

This point is known as the second principal focus. In other words, the position of the image on the axis 

corresponding to an axial point object at infinity is known as the second focal point of the lens. A plane 

intersecting the second focal point and perpendicular to the axis of the lens system is known as the 

second focal plane. 

 Similarly, if a set of rays from a fixed point [in the case of converging system] on the axis after 

passing through the lens system or directed towards a fixed point F1 [in the case of a diverging system] 

become parallel to the axis after passing through the lens system. This point is known as the first focal 

point or first principal focus. In other words, the first principal focus corresponds to the position of an 

axial point object on the axis for which the final image is formed at infinity. A plane intersecting the 

first focal point and perpendicular to the axis is known as the first focal plane of the lens system. Figure 

(1a) and (1b) shows the position of focal points and focal planes of a lens system. 

Principal points and principal planes: 
 The first principal plane in the object space is the locus of the points of intersection of the 

emergent rays in the image-space parallel to the axis and their conjugate incident rays in the object 

space. The second principal plane in the image space is the locus of the point s of intersection of the 

incident rays in the object space parallel to the axis and their conjugate emergent rays in the image 

space.   
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Figure (2) 

Let us consider a thick lens or co-axial lens system, having the principal foci at F1 and F2 as 

shown in figure (2). The ray incident at the point Q and parallel to the axis, after refraction through the 

lens takes the direction RF2 passing through the second principal focus F2. The incident and the 

emergent rays when produced intersect at H2. A plane passing through H2 and perpendicular to the axis 

is termed as the second principal plane of the lens. The point of intersection P2 with the axis is known as 

the second principal point. 

Consider another ray F1S passing through the first principal focus F1 such that after refraction it 

emerges along TW parallel to the axis at the same height as the incident ray at Q. The emergent ray TW 

and the corresponding incident ray F1S produced meet at a point H1 as shown in figure (2). A plane 

perpendicular to the axis and passing through H1 is known as the first principal plane and its point of 

intersection P1 with the axis is called the first principal point. 

Note: Two rays of light directed towards a point H1 on the first principal plane appear to start from a 

point H2 on the second principal plane. Therefore, H2 is the image of H1. Thus the points H1 and 

H2 are called conjugate points and the planes H1P1 and H2P2 are known as conjugate planes. The 

heights H1P1 = H2P2 and hence these planes have a lateral magnification of +1. 

Nodal points and Nodal planes: 
Nodal points are defined as a pair of conjugate points on the axis having unit positive angular 

magnification. This means that a ray of light directed towards one of these points, after refraction 

through the lens appears to proceed from the second point in a direction parallel to the incident direction 

as shown in figure (3). 

 
Let H1P1 and H2P2 be the first and the second principal plane of an optical system and let AF1 and 

BF2 represent its first and second focal planes respectively. A ray of light AH1 from a point ‘A’ on the 

first focal plane incident parallel to the axis proceeds along the direction H2F such that H1P1 = H2P2. 

Another incident ray AT1 parallel to the emergent ray H2F2 and strikes the principal plane at T1. 

The corresponding emergent ray start from a point T2 such that T2P2 = T1P1 and will proceed parallel to 

the ray H2F2 as the two incident rays originate from the same point A on the first focal plane of the lens 

system. Then, the point of intersection of the incident ray AT1 on the axis give the position of the first 

nodal point N1 and the point of intersection of the conjugate emergent ray T2R with the axis give the 

position of the second nodal point N2.  

Properties of nodal points:  

(1) Nodal points have unit angular magnification, because, tan 1 = tan 2  

(2) Distance P1N1 = P2N2. The distance between the principal point and the nodal points are same. 
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(3) Distance P1P2 = N1N2. The distance between the two principal points is equal to the distance 

between the two nodal points. 

(4) Distance P1N1 = P2N2 = P2F2 –F1P1 = f1 + f2, where f1 is positive and f2 is negative. 

(5) If the medium on either side of the lens system is the same, then f1 = - f2 and hence nodal points 

coincides with the corresponding principal points. 

Relation between the distance of the different cardinal points of a lens system and 

the focal length of the lens system in the case of a co-axial lens system: 

 

Consider two thin lenses L1 and L2 of focal lengths f1 and f2 separated by a distance ‘d’. Let u be 

the distance of the object from the first lens and the final image is formed at I at a distance v from the 

second lens. Let the first image due to the first lens is formed at I1. 

1

1

111

fuv
  or 

1

1

1

1

111

uf

fu

ufv


  - - - -  (1) 

 The image I1 behaves as a virtual object for the second lens and the object distance for the 

second lens is (v1-d) and the final image is formed at I. 

2

1

111

fdvv



 Or 

2

2

2

1

111

vf

vf

fvdv





 

Or, 
vf

vf
dv




2

21 )(  

Substituting the value of v1 from equation (1), we get,  

vf

vf
d

fu

uf




 2

2

1

1  

Multiplying by (u + v) (f2 – v), we get, 

      122121 fuvfvffudvfuf   

 

2121212121 fvfuvfvdffdfduvdufuvfuff   

0)()()( 2121122121  fdfffdfvdfffuffduv  - - (2) 

This equation (2) can be written as 

uvA + uB + vC + D = 0 - - - - (3) 

In equation (3), A B and C are coefficients. Dividing equation (3) by A, we get, 

0
A

D

A

C
v

A

B
uuv  - - - - (4) 

 Let the focal length of the equivalent lens is “f” and U = u -  [distance of object measured from 

the first principal plane] and V = v -  [distance of the image measured from the second principal plane] 

denote respectively the reduced object distance and reduced image distance. In these equations  is the 

distance of the first lens from the first principal plane and  is the distance of the second lens from the 

second principal plane. Then, the lens formula for the reduced distances is given by, 
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fUV

111
   

fuv

111





 
 

Multiplying by (v -)(u - )f, we get, 

))(()()(   vufvfu  

Simplifying and rearranging, 

0)()()(  fffvfuuv  - - - - (5) 

Comparing equation (4) and (5), we get,  

A

B
f    - - - - (6) 

A

C
f   - - - - (7) 

A

D
ff    - - - - (8) 

Multiplying equation (6) and (7), 

2

2

A

BC
fff    - - - - (9) 

Subtracting (9) from (8), 

22

2

A

BCDA

A

BC

A

D
f


  - - - - (10) 

Substituting the value of the coefficients A, B, C and D from equation (2), we get, 

 

2

21

21122121222

)(

))(())((

ffd

ffdfdfffffdfdf
f




 

   

2

21

2

2121

22

2

2

1

2

212

2

122

2
2

)( dff

fdfffdfffdffdfffd
f




 

Or, 
2

21

2

2

2

12

)( dff

ff
f


  or 

)( 21

21

dff

ff
f




  

Or, 
)( 21

21

dff

ff
f


 or 

2121

111

ff

d

fff
  - - - - (11) 

Also, 
f

ff
dff 21

21    - -- - (12) 

From equation (7), we can write, 

dff

df

dff

ffffdf

dff

ffdf

dff

ff

A

C
f

















21

1

21

21211

21

211

21

21
dff

df




21

1  - - - - (13) 

Using equation (12), we can write, 
2f

fd 
  - - - - (14) 

In the same way, we can show from equation (6) that, 
121

2

f

fd

dff

df 





  - - - - - (15) 

Also, from equation (14) and (15) we can see that 






2

1

f

f
 - - - - (16) 
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EYEPIECES 

 An eyepiece is an arrangement of two lenses separated by a suitable distance and it has the 

following advantages over a single eye lens. 

(i) It increases the angular object field 

(ii) It brings the centre of the exit pupil nearer the eye lens and increases the angular image field 

(iii) It helps to minimize the chromatic and spherical aberrations. 

 

HUYGENS EYEPIECE: 
 It consists of two plano-convex lenses having focal lengths in the ratio 3 : 1 and the distance 

between them is equal to the difference in their focal lengths. If 3f and f are the focal lengths of the two 

lenses, then d =3f – f = 2f and also, average focal length of the two lenses 


2

3 ff
2f = d and hence the 

condition for minimum spherical aberration and minimum achromatic aberration are satisfied by the 

lens system. Hence, this eyepiece is free from spherical and chromatic aberration. Image formation in 

Huygens eyepiece is illustrated in figure (1). 

 
The image [II1] of the distant object due to objective is formed at the focal plane of the field lens 

in its absence. The rays of light incident on the field lens pass through it and form the image at I1I1
1. 

This image is formed at the focal plane of the eye lens and the final image is formed at infinity.  

Huygens eyepiece is known as a negative eyepiece as the image due to objective is formed 

behind the field lens. [Object for the eyepiece is virtual.] It is for this reason, in this eyepiece cross-

wires cannot be used and hence this eyepiece cannot be used in those instruments in which quantitative 

study of images are made. 

Cardinal points of Huygens Eyepiece:  

 
Focal length of the lens combination [eyepiece] is given by, 

f
fff

ff

dff

ff
F

2

3

23

3

21

21 






  - - - - (1) 

 The distance of the first principal point from the field lens is given by, 

f
f

ff

f

dF
3

2
2
3

2







  - - - - (2) 
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 Similarly, the distance of the second principal point from the second lens is given by, 

f
f

ff

f

dF








3

2
2
3

1

  - - - -   (3) 

 Thus, the first focal point F1 is at a distance 3f/2 from the first principal point & hence it is at a 

distance 3f/2 from the field lens. The second principal point F2 is at a distance 3f/2 from the second 

principal point & hence it is at a distance f/2 to the right of the eye lens. 

RAMSDEN EYEPIECE: 
 Ramsden eyepiece consists of two plano-convex lenses of equal focal length separated by a 

distance equal to two-third of the focal length of either. The two lenses are arranged such that the 

convex surfaces of the two lenses face each other. [Outer faces are plane.] The eyepiece is placed 

beyond the position of the image due to the objective lens. In this eyepiece cross wires can be used and 

hence it can be used for quantitative measurement of the image. 

 The image formation in Ramsden eyepiece due to refraction through different lenses is as shown 

in the following figure (2) 

 
In this eyepiece, d  (f1+f2)/2 and hence condition of achromatism is not satisfied. 

In the same way d  (f1-f2) and hence the condition of minimum spherical aberration is not satisfied. But 

by making the total deviation to be shared among all the faces of the two lenses the condition for 

minimum spherical aberration is maintained. Also, using achromatic doublet as field lens and eye lens 

chromatic aberration is minimized 

Cardinal points of a Ramsden eyepiece: 
 Equivalent focal length of the combination of the lenses [eyepiece] is given by, 

f
fff

ff

dff

ff
F

4
3

3
2

21

21 






  - - - - (1) 

 The position of the first principal point from the field lens is given by, 

2

3
2

4
3

2

f

f

ff

f

dF






  - - - - (2) 

 The position of the second principal point from the second lens is given by, 

2

3
2

4
3

1

f

f

ff

f

dF






  - -- - (3) 
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Figure (2) 

Therefore the first principal point P1 is at a distance of f/2 to the right of the field lens and the second 

principal point P2 is at a distance of f/2 to the left of the eye lens. Since the system is in air, nodal points 

coincide with the principal points. The first focal point F1 is at a distance of 3f/4 from the first principal 

point and hence it is at a distance of f/4 to the left of the field lens. Also, The second focal point F2 is at 

a distance of 3f/4 from the second principal point and hence it is at a distance of f/4 to the right of the 

eye lens. 

COMPARISON OF HUYGENS EYEPIECE AND RAMSDEN EYEPIECE: 

 

 

Huygens Eyepiece 
 

 

Ramsden Eyepiece 

(1) The image formed by the objective is in 

between the field lens and eye lens and 

hence it is a negative eyepiece and hence 

cross wire cannot be used. 

(2) The condition for minimum spherical 

aberration is satisfied. 

 

(3) It satisfies the condition of achromatism. 

 

(4) It is achromatic for all colours. 

 

(5) It is used for qualitative purposes in 

microscopes and telescopes 

 

(6) It has a negative power. 

 

(7) The two principal planes are symmetrically 

situated with respect to the eye lens. 

 

 

(8) It cannot be used as a simple microscope. 

 

(1) The image formed by the objective 

is in front of the eyepiece and hence 

it is a positive eyepiece and hence a 

cross wire can be used. 

(2) The condition for minimum 

spherical aberration is not satisfied.  

 

(3) It does not satisfy the condition of 

achromatism 

(4) It is achromatic for only two 

colours. 

(5) It is used for quantitative purposes in 

microscopes and telescopes. 

 

(6) It has a positive power 

 

(7) The principal planes are 

symmetrically situated on either side 

of the eyepiece. 

 

(8) It can be used as a simple 

microscope. 

 


